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Abstract. This paper develops simplifying entropic models of irreversible closed cycles. The
entropic models involve the irreversible connections between external and internal main
operational parameters with finite physical dimensions. The external parameters are the mean
temperatures of external heat reservoirs, the heat transfers thermal conductance, and the heat
transfer mean log temperatures differences. The internal involved parameters are the reference
entropy of the cycle and the internal irreversibility number. The internal irreversibility number
allows the evaluation of the reversible heat output function of the reversible heat input. Thus
the cycle entropy balance equation to design the irreversible closed cycles only through
external operational parameters might be involved.
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Introduction

Development of proof thermodynamic design models has to be performed by several logical stages, 
synthetically presented below.
1. Defining the reference complete reversible models. This stage is considering Carnot Cycle. 
2. Defining the reference endoreversible models. This stage might be well achieved through Finite 

Physical Dimensions Thermodynamic (FPDT) mathematical models allowing the generalization of 
design results, not depending on the working fluid nature. For any endoreversible cycle the 
limitations of the endoreversible Carnot cycle are exceeded through the mean thermodynamic 
temperature concept. 

3. Defining the reference models assessing the irreversibility influence. The equilibrium 
thermodynamics was completed through mean thermodynamic temperature, exergy and 
irreversible entropy generation concepts. The FPDT assessments might be completed defining a 
single concept evaluating priori the overall internal irreversibility and involving the cyclic entropy 
balance.

4. Defining the optimization methods of reference reversible and irreversible cycles. The optimization 
methods consider either pure thermodynamic criteria, or CAPEX criteria, or operational costs 
criteria, or environmental criteria. The more elaborated methods combine different criteria.

5. Defining the reference models for possible interconnected grids of irreversible cycles and the 
evaluation of performances, energy interactions, investments, operational costs, environmental 
effects, preservation of natural resources. 
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2. Mathematical algorithm

The Irreversible Closed Cycles—The Irreversible Energy Efficiency—The Reference Entropy—The 
Number of Internal Irreversibility

Let us suppose the general basic irreversible thermal systems interacting with the ‘environment’ 
by heat transfers, mass transfers and power transfers, see Figure 1. 
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Figure 1. Basic irreversible 
thermal systems.

M: mass of the working fluid surrounded by the inner walls at a certain operational time.
V: working fluid volume defined by the inner walls at a certain operational time.
U: internal energy of the working fluid surrounded by the inner walls at a certain operational time.
S: entropy of the working fluid surrounded by the inner walls at a certain operational time.
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These thermal systems can be analyzed taking into account either the whole irreversibility, 
internal and external, or only the internal irreversibility. Three types of thermal systems would 
be analyzed:
I. the enlarged open thermal system comprising three interconnected parts and completely 
isolated from the universe, i.e., the proper open thermal system deformable under the external 
pressure which is joined with the external heat transfer reservoirs having known mean 
temperatures and heat capacities and joined with the deformation work and mass transfer 
reservoirs having known parameters, pressure, temperature, mass composition and specific 
energies (enthalpies and entropies including both the chemical and physical parts , kinetic, and 
potential energies);
II. the enlarged non-deformable closed thermal system has two coupled parts isolated from 
the universe, the proper closed thermal system joined only with the external heat transfer 
reservoirs having known mean temperatures and specific heat capacities, and 
III. the closed thermal system/cycle considered alone but connected to external heat reservoirs 
with unknown parameters.
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2.1. Assumptions for the First Case, the Enlarged Thermal Systems

• Non steady-state enlarged basic open thermodynamic systems, including both the thermal
system, and the external heat reservoirs controlling the heat transfers, and the environment
allowing the mass transfers and the deformation work transfer under the external pressure,
see Figure 1;

• The working fluid is a mixture of different chemical species, the inlet and outlet compositions
might be different because of chemical reactions that can appear during the flow through the
thermal system, e.g., combustion;

• The inner boundary of the flow path through the thermal system is deformable under the 
environmental pressure;

Correlating the first law Equation (1) with the second law Equation (2), they can obtain the most 
general equation of the irreversible power (3) connected to the complete reversible cycle

଴ ୣ ୣ

ଶ

୧୬୪ୣ୲
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(2)
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where:

 ଴ ୣ ୣ
୰ୣ୴

୪୭ୱ୲
୧୰୰ୣ୴are the heat transfer rates from the heat source and to the heat sink,

the real irreversible power, the complete reversible power and the lost power through
irreversibility;

 ୣ
డ୚

డ୲
is the deformation work transfer under the external pressure, pe is the external

pressure and V is the deformable volume of the thermal system;

 , h, s are the mass flow rates, the specific enthalpy and the specific entropy inclosing both
the chemical and physical parts, compulsory to obey to the first law of thermodynamics and
considering all possible internal chemical processes, e.g., combustion;

 ୡమ

ଶ
are the specific kinetic and potential energies;

 T, T0 are the mean temperatures of the heat source and of the heat sink;

 ୥ୣ୬
୧୰୰ୣ୴ is the entropy rate generated through whole irreversibility.

 ∗ ୡమ

ଶ
is the so called “methalpy” – generalized enthalpy (Kestin, J., A course in

Thermodynamics; Hemisphere: Washington, DC, USA, 1979; Volume 1, pp. 40 and 223)
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ୣ (10)

డ୙

డ୲
and డୗ

డ୲
(11)

2.2. Assumptions Considering Closed Thermal Systems

Let us suppose the general basic closed irreversible thermal systems, see Figure 2. The 
assumptions are

•no mass transfers

•non deformable boundary walls, and

•steady state operation

∗
୧୬୪ୣ୲

∗
୭୳୲୪ୣ୲ and ୧୬୪ୣ୲ ୭୳୲୪ୣ୲ (9)

Figure 2. Scheme of the 
irreversible heat transfer 

interactions.
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଴

଴
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଴

଴ ଴

(13)

୧୰୰
଴

଴ ଴
୧୰୰ ୌୖ ୫୲୲ (14)

The associated entropy balance equation for the enlarged thermal system is, see Figure 2

The associated entropy balance equation only for the alone thermal system is, see Figure 2

The relation between Irr and Nirr is obtained from entropy balance Equations (12) and (13)

• Q̇, Q̇଴ are the heat transfer rates;
• T, T଴, ∆T, ∆T଴ are the mean temperatures of the heat source, of the heat sink and the corresponding mean log

temperature differences controlling the heat transfers and T − ∆T and T଴ + ∆T଴ are the mean
thermodynamic temperatures of the working fluid for the reversible heating and cooling processes;

• Irr is the comprehensive dimensionless irreversibility function linking the heat transfers through the entropy
balance equation for the enlarged thermal system (both the external irreversibility and the internal one);

• Nirr is the internal dimensionless irreversibility function called as the number of internal irreversibility and
linking the heat transfers through entropy balance equation only for the thermal system (only internal
irreversibility);

• θHR, θmtt are the ratios of mean temperatures of external heat reservoirs and of mean thermodynamic 
temperatures of cycle’s non-adiabatic processes, i.e. reversible heating and cooling.
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Ẇୣ = Ẇୣ
୰ୣ୴ + Ẇ୪୭ୱ୲

୧୰୰ୣ୴ = Q̇୰ୣ୴ 1 −
T଴

T
− T଴Ṡ୥ୣ୬

୧୰୰ୣ୴ (15)

EEୣ୬୥୧୬ୣୱ
୧୰୰ୣ୴ =

Ẇୣ

Q̇୰ୣ୴

=
Ẇୣ

୰ୣ୴ + Ẇ୪୭ୱ୲
୧୰୰ୣ୴

Q̇୰ୣ୴

=
Ẇୣ

୰ୣ୴

Q̇୰ୣ୴

+
Ẇ୪୭ୱ୲

୧୰୰ୣ୴

Q̇୰ୣ୴

= 1 −
T଴

T
−

T଴Ṡ୥ୣ୬
୧୰୰ୣ୴

ṁ T − ∆T ∆s୯

= 1 −
T଴

T
1 +

θୗ୐୘Ṡ୥ୣ୬
୧୰୰ୣ୴

ṁ∆s୯
= 1 −

T଴

T
Irr < EEେୟ୰୬୭୲ = 1 −

T଴

T

(16)

2.3. Irreversible Energy Efficiency of Enlarged Closed Thermal System

They will be demonstrated the comprehensive irreversible energy efficiency related to the 
complete reversible Carnot cycle, i.e., for the enlarged thermal system, see Figure 2.

•Engine

The delivered power of the enlarged engine cycle

The irreversible energy efficiency

where:

θୗ୐୘ =
୘

୘ି∆୘
is a dimensionless temperature ratio related to the second law of thermodynamics; ṁ∆s୯ is the reversible

entropy variation rate of the working fluid during the reversible heat input, Q̇୰ୣ୴, and 1 +
஘౏ై౐ୗ̇ౝ౛౤

౟౨౨౛౬

୫̇∆ୱ౧
= Irr is the primary

form of the overall irreversibility dimensionless function.
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ṁ T − ∆T ∆s୯
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T

1 +
θୗ୐୘Ṡ୥ୣ୬

୧୰୰ୣ୴

ṁ∆s୯
− 1

=
1

T଴
T
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< COPେୟ୰୬୭୲ =
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T଴
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− 1

(18)

•Refrigeration unit
The consumed power of the enlarged refrigeration unit

The irreversible energy efficiency

where:
θୗ୐୘ =

୘

୘ି∆୘
is a dimensionless temperature ratio related to the second law of thermodynamics; ṁ∆s୯ is the

working fluid entropy variation rate during the reversible heat input Q̇୰ୣ୴, and 1 +
஘౏ై౐ୗ̇ౝ౛౤

౟౨౨౛౬

୫̇∆ୱ౧
= Irr is the

primary form of the overall irreversibility dimensionless function.
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Ẇୣ = Ẇୣ
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୰ୣ୴ + Ẇ୪୭ୱ୲,ୡ୷ୡ୪ୣ
୧୰୰ୣ୴

Q̇୰ୣ୴

=
Ẇୣ
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= 1 −
T଴ + ∆T଴

T − ∆T
−

T଴ + ∆T଴ Ṡ୥ୣ୬,ୡ୷ୡ୪ୣ
୧୰୰ୣ୴

ṁ T − ∆T ∆s୯
= 1 −

T଴ + ∆T଴

T − ∆T
1 +

Ṡ୥ୣ୬,ୡ୷ୡ୪ୣ
୧୰୰ୣ୴

ṁ∆s୯
= 1 −

T଴ + ∆T଴

T − ∆T
N୧୰୰

< EEେୟ୰୬୭୲ = 1 −
T଴ + ∆T଴

T − ∆T

(20)

2.4. Irreversible Energy Efficiency Only for the Closed Thermal System

They will be demonstrated the comprehensive irreversible energy efficiency related to the 
endoreversible Carnot cycle, see Figure 2.

•Engine

The delivered power of the alone closed engine cycle

The irreversible energy efficiency

where:

ṁ∆s୯ is the working fluid entropy variation rate during the reversible heat input Q̇୰ୣ୴, and 1 +
ୗ̇ౝ౛౤,ౙ౯ౙౢ౛

౟౨౨౛౬

୫̇∆ୱ౧
=

N୧୰୰ is the primary form of the internal irreversibility dimensionless function.
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Ẇୣ = −Ẇୣ
୰ୣ୴ − Ẇ୪୭ୱ୲,ୡ୷ୡ୪ୣ

୧୰୰ୣ୴ = −Q̇୰ୣ୴ 1 −
T଴ + ∆T଴

T − ∆T
+ T଴ + ∆T଴ Ṡ୥ୣ୬,ୡ୷ୡ୪ୣ

୧୰୰ୣ୴

= Q̇୰ୣ୴

T଴ + ∆T଴

T − ∆T
− 1 + T଴ + ∆T଴ Ṡ୥ୣ୬,ୡ୷ୡ୪ୣ

୧୰୰ୣ୴
(21)

EE୰ୣ୤୰୧୥ୣ୰ୟ୲୧୭୬
୧୰୰ୣ୴ =

Q̇୰ୣ୴

Ẇୣ

= −
Q̇୰ୣ୴

Ẇୣ
୰ୣ୴ + Ẇ୪୭ୱ୲,ୡ୷ୡ୪ୣ

୧୰୰ୣ୴
= −

1

Ẇୣ
୰ୣ୴

Q̇୰ୣ୴
+

Ẇ୪୭ୱ୲,ୡ୷ୡ୪ୣ
୧୰୰ୣ୴

Q̇୰ୣ୴

=
1

T଴ + ∆T଴
T − ∆T

− 1 +
T଴ + ∆T଴ Ṡ୥ୣ୬,ୡ୷ୡ୪ୣ

୧୰୰ୣ୴

ṁ T − ∆T ∆s୯

=
1

T଴ + ∆T଴
T − ∆T

1 +
Ṡ୥ୣ୬,ୡ୷ୡ୪ୣ

୧୰୰ୣ୴

ṁ∆s୯
− 1

=
1

T଴ + ∆T଴
T − ∆T

N୧୰୰ − 1

< COPେୟ୰୬୭୲ =
1

T଴ + ∆T଴
T − ∆T

− 1

(22)

• Refrigeration unit

The consumed power of the alone closed refrigeration unit

The irreversible energy efficiency

where:

ṁ∆s୯ is the working fluid entropy variation rate during the reversible heat input Q̇୰ୣ୴, and 1 +
ୗ̇ౝ౛౤,ౙ౯ౙౢ౛

౟౨౨౛౬

୫̇∆ୱ౧
= N୧୰୰ is

the primary form of the internal irreversibility dimensionless function.
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Fig. 3. The heat input for irreversible closed cycle Fig. 4. The heat output for irreversible closed cycle

�̇�ଵଶ௜௥௥௘௩ = �̇� ℎଶ௜௥௘௩ − ℎଵ

= �̇� ℎଶ௥௘௩ − ℎଵ = �̇�𝑇௠௤
ଵଶ௥௘௩ 𝑠ଶ௥௘௩ − 𝑠ଵ

�̇�ଷସ௜௥௥௘௩ = �̇� ℎସ௜௥௘௩ − ℎଷ

= �̇� ℎସ௥௘௩ − ℎଷ = �̇�𝑇௠௤
ଷସ௥௘௩ 𝑠ସ௥௘௩ − 𝑠ଷ

OBS1: The dimensionless functions, Irr and Nirr, depend on the reference entropy, ∆�̇� = �̇�∆𝑠௤ and 
on the corresponding �̇�௚௘௡

௜௥௥௘௩ . At their turn, both parameters, ∆�̇� = �̇�∆𝑠௤ and �̇�௚௘௡
௜௥௥௘௩ , will be strongly 

shaped through the working fluids nature and their thermodynamic properties.

OBS2. The heat rates exchanged with external heat reservoirs are the reversible heat rates for 
constant pressure processes where the irreversibility is defined by pressure drops, see Figs. 3 and 4. 

The reference entropy, ∆�̇� = �̇�∆𝑠௤ > 0, is always the entropy variation of the working fluid during the cyclic reversible 
heating through the cyclic heat input. It must be mentioned that the reversible heat input is equalizing the irreversible one, 
because the extra irreversible entropy generation, caused by friction is corresponding to an equivalent throttling process. 
The same statement must be used for the cyclic heat output, see Figs 3 and 4.

When we have different irreversible non adiabatic processes, e.g. constant temperature, polytropic, constant volume 
we have to define the irreversibility either through adequate and known pressure drops caused by friction or through 
irreversible lost work alike it is defined the isentropic efficiency of an adiabatic process.
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3. Design Imposed Operational Conditions
The analysis and design of irreversible cycles has two directions. The first one is to analyze

the cycle ignoring the energy interactions with the environment by imposing either constant
heat input or constant power or constant energy efficiency or constant reference entropy. The
second one uses the energy interactions as main control functions and takes into consideration
only the number of internal irreversibility as a general internal function quantifying the all
internal irreversibility and linking the external heat transfers with external heat reservoirs.

3.1. FPDT Internal Design through Imposed Operational Conditions
They were evaluated the performances of a Joule-Brayton cycle working with two ideal gases,

air and CO2. The main finite physical dimension parameter was the classical compression ratio,
πC, and the dependence functions characterizing the performances of the irreversible cycle
were:
 the maximum temperature on the cycle, T3irr [K], see Figure 5,
 the energy efficiency, EEirr, see Figure 6, and
 the number of internal irreversibility, Nirr, see Figure 7.

They were imposed the specific power kJ/kg and the internal irreversible entropy
generation known through isentropic efficiencies of compressor, ηsC, and of gas turbine, ηsT, and
through the pressure drops inside exchangers, rp. The all limitations would be controlled by the
working fluids nature and by the magnitude of irreversibility.



3.1. Numerical results, internal design
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Below are selected numerical results, see Figures 5, 6 and 7, for imposed constant power
kJ/kg and imposed irreversibility for graphs 1, 2, 3 and 4:

1: air, ηsC = 0.85, ηsT = 0.9, rp = 0.975; 2: air, ηsC = 0.8 and ηsT = 0.85, rp = 0.95
3: CO2, ηsC = 0.85, ηsT = 0.9, rp = 0.975; 4: CO2, ηsC = 0.8 and ηsT = 0.85, rp = 0.95

Figure 5. Dependences T3irr = fT(πC).

Figure 6. Dependences EEirr = fE(πC).

Figure 7. Dependences Nirr = fN(πC).
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4. Irreversible Trigeneration Cycles External Design Based on FPDT

This section is extending the mathematical models of external design to four irreversible closed
trigeneration cycles:

a.engine cycle working in power mode and the reverse cycle working in refrigeration mode, the
summer season;

b.engine cycle working in cogeneration mode and the reverse cycle working in refrigeration
mode, the winter season;

c.engine cycle working in power mode and the reverse cycle working both in refrigeration mode
and heat pump mode, the winter season; and

d. engine cycle working in cogeneration mode and the reverse cycle working both in 
refrigeration mode and heat pump mode, the winter season.
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4.1. Basic Mathematical Model

The mathematical model joins the first law and the linear heat transfer law with the second law. 
The useful thermal energies must be known through the ratio of refrigeration rate to power (x) 
and the ratio of heating rate to power (y).

୉ ୯ (23)

୘୉ ୌ େ ୌ େ [kW.K–1] (24)

ୌ
ୋౄ

ୋ౐ు
, େ

ୋి

ୋ౐ు
, ୌ େ , େ ୌ (25)

4.1.1. Engine Irreversible Cycle

The reference entropy variation rate is: 

The finite physical dimension control parameters are: 

•Mean log temperature differences ΔTH [K] at the hot side and ΔTC [K] at the cold side.

•Thermal conductance ୌ [kW/K] allocated to the hot side, and thermal conductance 
େ [kW/K] allocated to the cold side.

•Thermal conductance inventory:

where U [kW·m–2·K–1] is the overall heat transfer coefficient and A [m2] is the heat transfer area.
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First Law Equations

Q̇ୌ = gୌG୘୉∆Tୌ = Tୌ∆Ṡ୉= θୌୗTୌ − ∆Tୌ ∆Ṡ୉ at the hot side (26)

⇒⏞
(ଶ଺)

G୘୉ =
θୌୗTୌ − ∆Tୌ ∆Ṡ୉

gୌ∆Tୌ

(27)

Q̇େ = − Tୌ + ∆Tେ ∆Ṡ୉N୧୰୰,୉ = − 1 − gୌ G୘୉∆Tେ at the cold side (28)

⇒⏞
(ଶ଻,ଶ଼)

∆Tେ =
gୌ∆TୌN୧୰୰,୉

θୌୗ 1 − gୌ −
∆Tୌ 1 + gୌ N୧୰୰,୉ − 1

θୌୗTୌ

(29)

Ẇ୉ = Q̇ୌ + Q̇େ = θୌୗTୌ − ∆Tୌ ∆Ṡ୉ − Tୌ +
gୌ∆TୌN୧୰୰,୉

θୌୗ 1 − gୌ −
∆Tୌ 1 + gୌ N୧୰୰,୉ − 1

θୌୗTୌ

∆Ṡ୉N୧୰୰,୉
(30)

EE୧୰୰,୉ =
Ẇ୉

Q̇ୌ

= 1 −

Tୌ +
gୌ∆TୌN୧୰୰,୉

θୌୗ 1 − gୌ −
∆Tୌ 1 + gୌ N୧୰୰,୉ − 1

θୌୗTୌ

N୧୰୰,୉

θୌୗTୌ − ∆Tୌ

(31)

The above performance functions get explicit forms if they are replacing the reference entropy through 
one imposed operational condition. The main difficulty is to correctly evaluate the possible imposed 
energy efficiency by a sensitivity analysis and to define the domain range of Nirr. The proof results are 
correlating the internal and external FPDT evaluations. 
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4.1.1. Numerical results, external design

∆Tୌ = 795.0769(1 − gୌ) with Nirr,E = 1.00

∆Tୌ =
଺଻଴.଼ସ଺(ଵି୥ౄ)

ଵା଴.ଶହ୥ౄ
with Nirr,E = 1.25

∆Tୌ =
ହସ଺.଺ଵହ(ଵି୥ౄ)

ଵା଴.ହ୥ౄ
with Nirr,E = 1.50

As a very rapid computational example, they were imposed mixed operational conditions, constant 
power and constant energy efficiency: W = 100 kW, θHS = 4, TCS = 323 K, and EEirr,E = 0.35, and some 
numbers of internal irreversibility, see Figures 8–10. The extra imposed energy efficiency allowed to 
find the relationship ∆TH=φ(gH,Nirr,E):

Figure 8. Dependence between the 
mean log temperature difference at 
the hot side and the dimensionless 
thermal conductance at the hot 
side, ∆Tୌ = f gୌ

Figure 9. Dependence between the mean 
log temperature difference at the cold side 
and the dimensionless thermal 
conductance at the hot side ∆Tେ = f gୌ

Figure 10. Dependence between 
the thermal conductance 
inventory and the dimensionless 
thermal conductance at the hot 
side G୘୉ = f gୌ
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∆Ṡୖ = ṁ∆s୯ (32)

G୘ୖ = Gୖ + G଴ = UA ୖ + UA ଴ [kW·K–1] (33)
gୖ =

ୋ౎

ୋ౐౎
, g଴ =

଴

ୋ౐౎
, gୖ + g଴ = 1, g୭ = 1 − gୖ (34)

4.1.2. Refrigeration Irreversible Cycle

•The reference entropy variation rate is:

•The finite physical dimension control parameters are: mean log temperature differences ΔTR [K] and ΔT0 [K], 
inside of heat exchangers at the heat source and at the heat sink; 

•Thermal conductances UA ୖ inside the heat exchanger at the heat source, and UA ଴ inside the heat 
exchanger at the heat sink:

•Thermal conductance inventory:

where U [kW·m–2·K–1] is the overall heat transfer coefficient and A [m2] is the heat transfer area.
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The above performance functions get explicit forms if they are replacing the reference entropy through one imposed 
operational condition. The main difficulty is to correctly evaluate the possible imposed energy efficiency by a 
sensitivity analysis and to define the domain range of Nirr. The proof results are correlating the internal and external 
FPDT evaluations. 

Q̇ୖ = gୖG୘ୖ∆Tୖ = Tୖ∆Ṡୖ =
T଴ୗ

θୖୗ
− ∆Tୖ ∆Ṡୖ (35)

⇒⏞
(ଷସ)

G୘ୖ =

T଴ୗ
θୖୗ

− ∆Tୖ ∆Ṡୖ

G୘ୖ∆Tୖ

(36)

Q̇଴ = − 1 − gୖ G୘ୖ∆T଴ = − T଴ୗ + ∆T଴ ∆ṠୖN୧୰୰,ୖ (37)

⇒⏞
(ଷହ,ଷ଺)

∆T଴ =
gୖθୖୗ∆TୖN୧୰୰,ୖ

1 − gୖ −
θୖୗ∆Tୖ

T଴ୗ
1 + gୖ N୧୰୰,ୖ − 1

(38)

Ẇୖ = Q̇ୖ + Q̇଴ =
T଴ୗ

θୖୗ
− ∆Tୖ − T଴ୗ +

gୖθୖୗ∆TୖN୧୰୰,ୖ

1 − gୖ −
θୖୗ∆Tୖ

T଴ୗ
1 + gୖ N୧୰୰,ୖ − 1

N୧୰୰,ୖ ∆Ṡୖ (39)

EĖ୧୰୰,ୖ =
Q̇ୖ

Ẇୖ

=

T଴ୗ
θୖୗ

− ∆Tୖ

T଴ୗ +
gୖθୖୗ∆TୖN୧୰୰,ୖ

1 − gୖ −
θୖୗ∆Tୖ

T଴ୗ
1 + gୖ N୧୰୰,ୖ − 1

N୧୰୰,ୖ −
T଴ୗ
θୖୗ

− ∆Tୖ
(40)

•First law balance equations: 



4.1.2. Numerical results, external design

∆Tୖ =
ଵସଷ(ଵି୥౎)

ଷ
with Nirr,E = 1.00

∆Tୖ =
଻଼.ସ(ଵି୥౎)

ଷା଴.ଷ୥౎
with Nirr,E = 1.10

∆Tୖ =
ଵଷ.଼(ଵି୥౎)

ଷା଴.଺୥౎
with Nirr,E = 1.20

As an example, they were imposed mixed operational conditions, constant heat input and constant energy 
efficiency: Q̇ୖ = 0.1Ẇ୉ = 10 kW, TRS = 263 K, T0S = 323 K, EEirr,R = COP = 2, see Figures 11–13. The extra 
imposed energy efficiency allowed to find the first explicit operational function ∆Tୖ = f gୖ, N୧୰୰,ୖ .

Figure 11. Dependence between 
the mean log temperature 
difference at the cold side and 
the dimensionless thermal 
conductance at the cold side, 
∆Tୖ = f(gୖ)

Figure 12. Dependence between 
the mean log temperature 
difference at the hot side and the 
dimensionless thermal 
conductance at the cold side, 
∆T଴ = f(gୖ).

Figure 13. Dependence between the 
thermal conductance inventory and 
the dimensionless thermal 
conductance at the cold side ide, 
G୘ୖ = f(gୖ)
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4.2. Energy Efficiency of Irreversible Trigeneration System 

EEୟ =
Ẇ୉ − Ẇୖ + Q̇ୖ

Q̇ୌ

= EE୉ 1 + x
COP − 1

COP
(41)

EEୠ =
Ẇ୉ − Ẇୖ + Q̇ୖ + Q̇େ

∗

Q̇ୌ

= EEୡ୭୥ + EE୉x
COP − 1

COP
(42)

EEୡ =
Ẇ୉ − Ẇୖ + Q̇ୖ + Q̇଴

Q̇ୌ

= EE୉ 1 + 2x (43)

EEୢ =
Ẇ୉ − Ẇୖ + Q̇ୖ + Q̇େ

∗
+ Q̇଴

Q̇ୌ

= EEୡ୭୥ + 2EE୉x (44)

•Case “a”—energy efficiency:

•Case “b”—energy efficiency:

•Case “c”—energy efficiency:

•Case “d”—energy efficiency:

They must emphasize that Equations (41)–(44) are identical for ideal reversible, endoreversible and 
irreversible trigeneration systems. They have to know the real energy efficiencies of system components, 
i.e., EEcog, EEE,real, and COPreal—and ratio x.

Ẇ୳ = Ẇ୉ − Ẇୖ = Ẇ୉ 1 −
x

COP
≥ Ẇ୳,୫୧୬ ⇒ x ≤ COP 1 −

Ẇ୳,୫୧୬

Ẇ୉
(45)

For all cases, the minimum useful power compels the maximum x ratio
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Table 1. External parameters for the engine, Ẇ୉ = 100 kW, EEE = 0.35 (imposed), θHS = 4 (imposed)

Trigeneration Nirr 𝐠𝐇
TCS
(K)

ΔTH
(K)

ΔTC
(K)

GTE
(kW·K–1)

(a)

1.00 0.5000 308 379 246 1.507

1.25 0.4721 308 302 176 2.003

1.50 0.4494 308 234 124 2.713

(b)

1.00 0.5000 343 422 274 1.354

1.25 0.4721 343 336 196 1.799

1.50 0.4494 343 261 138 2.436

(c)

1.00 0.5000 273 336 218 1.701

1.25 0.4721 273 268 156 2.261

1.50 0.4494 273 208 110 3.061

(d)

1.00 0.5000 343 422 274 1.354

1.25 0.4721 343 336 196 1.799

1.50 0.4494 343 261 138 2.436
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Trigeneration Nirr 𝐠𝐑
T0S
(K)

TRS
(K)

ΔTR
(K)

ΔT0
(K)

GTR
(kW·K–1) COP

(a)

1.0 0.500 308 253 23.83 35.75 0.839 2

1.1 0.488 308 253 13.24 18.83 1.547 2

1.2 0.477 308 253 3.15 4.31 6.503 2

(b)

1.0 0.500 273 253 24.13 32.17 0.829 3

1.1 0.488 273 253 13.56 17.13 1.511 3

1.2 0.477 273 253 3.49 4.24 5.88 3

(c)

1.0 0.500 343 253 23.60 39.33 0.875 1.5

1.1 0.488 343 253 13.00 20.53 1.577 1.5

1.2 0.477 343 253 2.88 4.38 7.106 1.5

(d)

1.0 0.500 343 253 23.60 39.33 0.875 1.5

1.1 0.488 343 253 13.00 20.53 1.577 1.5

1.2 0.477 343 253 2.88 4.38 7.106 1.5

Table 2. External parameters for the refrigeration unit, Q̇ୖ = 10 kW
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The comparison of different kind of trigeneration systems might be assessed only if they have similar 
operational features, see for instance Figure 14.1 with: EEirr,E = 0.35, and COP = 2, and EEcog = 0.85 and the 
minimum useful power 50% from engine power, i.e., xmax = 1. 

In Figure 14.2 are compared the ideal reversible energy efficiency for ideal trigeneration cycle built with ideal 
Carnot cycles, with EEE = 0.75 for θHS = 4 as in Table 1, and COP = TRS/(T0S − TRS) with temperatures from Table 
2, and EEcog = 1 and the minimum useful power 50% from engine power, i.e., xmax = 1.

Figure 14.1. The irreversible energy efficiency of 
trigeneration systems

Figure 14.2. The ideal reversible energy efficiency of 
trigeneration systems



5. Conclusions

The generalizing FPDT mathematical models minimizes the finite physical dimensions external control 
parameters, and operational corresponding dependence functions of engine and refrigeration cycles 
included in a trigeneration system.

There are two kind of control parameters, four external and two internal. The four external control 
parameters are pertaining to external heat transfer—i.e., two mean log temperature differences and two 
dimensionless thermal conductance inventories. The internal ones are the reference entropy and the 
number of internal irreversibility which delineate a single dimensionless concept a priori evaluating the 
accumulated internal irreversibility.

The reference entropy function is replaced through the operational adopted condition—i.e., either through 
the imposed power, or through the imposed heat input as in this paper, or through the imposed energy 
efficiency or through the imposed reference entropy.

The number of internal irreversibility is a dimensionless parameter generalizing the evaluation of 
accumulated irreversible entropy generated along the cycle.

Before each FPDT work they must be defined the operational possible domain range of the number of 
internal irreversibility depending on the working fluid nature and on the thermal system type.

The evaluated specific numerical results showed as higher the internal irreversibility as lower the external 
irreversibility in order to maintain constant energy efficiency.

The Equations (41) to (44) are universal, can be applied for ideal reversible trigeneration cycle, 
endoreversible, or irreversible ones, see for instance Figures 14.1, 14.2. The comparison reversible–
endoreversible–irreversible has to use the operational similarity and thus they can be completed various 
analyses and optimizing assessments.
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THANK YOU!


